4 resultados para algal biomass

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R-24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R-24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R-2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R-24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades. some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations Such as the NAO.